A Tensorflow 2.0 implementation of Adversarial Autoencoder (ICLR 2016)
Architecture | Description |
---|---|
![]() |
Regularization of the hidden code by incorporationg full label information (Fig.3 from the paper). Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, and Ian J. Goodfellow. 2015. Adversarial Autoencoders. CoRRabs/1511.05644 (2015). Figure 3 from the paper. |
gaussian_mixture
priorTarget prior distribution | Learnt latent space | Sampled decoder ouput |
---|---|---|
![]() |
![]() |
![]() |
Input images | Reconstructed images |
---|---|
![]() |
![]() |
Gan | Encoder | Discriminator |
---|---|---|
![]() |
![]() |
![]() |
python train_model.py --prior_type gaussian_mixture
--prior_type
: Type of target prior distribution. Default: gaussian_mixture
. Required.--results_dir
: Training visualization directory. Default: results
. Created if non-existent.--log_dir
: Log directory (Tensorboard). Default: logs
. Created if non-existent.--gm_x_stddev
: Gaussian mixture prior: standard deviation for the x coord. Default: 0.5
--gm_y_stddev
: Gaussian mixture prior: standard deviation for the y coord. Default: 0.1
--n_epochs
: Number of epochs. Default: 20
--learning_rate
: Learning rate. Default: 0.001
--batch_size
: Batch size. Default: 128
--num_classes
: Number of classes (for further use). Default: 10
Visualization of outliers from learnt distribution in the latent space